Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
World J Gastrointest Surg ; 15(8): 1761-1773, 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37701700

ABSTRACT

BACKGROUND: Reflux esophagitis is a common postoperative complication of proximal gastrectomy. There is an urgent need for a safer method of performing esophageal-gastric anastomosis that reduces the risk of reflux after proximal gastrectomy. We hypothesize that a novel technique termed esophagogastric asymmetric anastomosis (EGAA) can prevent postoperative reflux in a safe and feasible manner. AIM: To observe a novel method of EGAA to prevent postoperative reflux. METHODS: Initially, we employed a thermal stress computer to simulate and analyze gastric peristalsis at the site of an esophagogastric asymmetric anastomosis. This was done in order to better understand the anti-reflux function and mechanism. Next, we performed digestive tract reconstruction using the EGAA technique in 13 patients who had undergone laparoscopic proximal gastrectomy. Post-surgery, we monitored the structure and function of the reconstruction through imaging exams and gastroscopy. Finally, the patients were followed up to assess the efficacy of the anti-reflux effects. RESULTS: Our simulation experiments have demonstrated that the clockwise contraction caused by gastric peristalsis and the expansion of the gastric fundus caused by the increase of intragastric pressure could significantly tighten the anastomotic stoma, providing a means to prevent the reverse flow of gastric fluids. Thirteen patients with esophagogastric junction tumors underwent laparoscopic proximal gastrectomy, with a mean operation time of 304.2 ± 44.3 min. After the operation, the upper gastroenterography in supine/low head positions showed that eight patients exhibited no gastroesophageal reflux, three had mild reflux, and two had obvious reflux. The abdominal computed tomography examination showed a valve-like structure at the anastomosis. During follow-up, gastroscopy revealed a closed valve-like form at the anastomosis site without stenosis or signs of reflux esophagitis in 11 patients. Only two patients showed gastroesophageal reflux symptoms and mild reflux esophagitis and were treated with proton pump inhibitor therapy. CONCLUSION: EGAA is a feasible and safe surgical method, with an excellent anti-reflux effect after proximal gastrectomy.

2.
Open Forum Infect Dis ; 10(5): ofad187, 2023 May.
Article in English | MEDLINE | ID: mdl-37213428

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2/BA.2.12.1 and BA.4/BA.5 subvariants have mutations associated with increased capacity to evade immunity when compared with prior variants. We evaluated mRNA monovalent booster dose effectiveness among persons ≥5 years old during BA.2/BA.2.12.1 and BA.4/BA.5 predominance. Methods: A test-negative, case-control analysis included data from 12 148 pharmacy SARS-CoV-2 testing sites nationwide for persons aged ≥5 years with ≥1 coronavirus disease-2019 (COVID-19)-like symptoms and a SARS-CoV-2 nucleic acid amplification test from April 2 to August 31, 2022. Relative vaccine effectiveness (rVE) was estimated comparing 3 doses of COVID-19 mRNA monovalent vaccine to 2 doses; for tests among persons ≥50 years, rVE estimates also compared 4 doses to 3 doses (≥4 months since third dose). Results: A total of 760 986 test-positive cases and 817 876 test-negative controls were included. Among individuals ≥12 years, rVE of 3 versus 2 doses ranged by age group from 45% to 74% at 1-month post vaccination and waned to 0% by 5-7 months post vaccination during the BA.4/BA.5 period.Adults aged ≥50 years (fourth dose eligible) who received 4 doses were less likely to have symptomatic SARS-CoV-2 infection compared with those with 3 doses; this rVE remained >0% through at least 3 months since last dose. For those aged ≥65 years, rVE of 4 versus 3 doses 1-month post vaccination was higher during BA.2/BA.2.12.1 (rVE = 49%; 95% confidence interval [CI], 43%-53%) than BA.4/BA.5 (rVE = 40%; 95% CI, 36%-44%). In 50- to 64-year-olds, rVE estimates were similar. Conclusions: Monovalent mRNA booster doses provided additional protection against symptomatic SARS-CoV-2 infection during BA.2/BA.2.12.1 and BA.4/BA.5 subvariant circulation, but protection waned over time.

3.
MMWR Morb Mortal Wkly Rep ; 72(7): 177-182, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36795625

ABSTRACT

On June 18, 2022, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for use of the 2-dose monovalent Moderna COVID-19 vaccine as a primary series for children aged 6 months-5 years* and the 3-dose monovalent Pfizer-BioNTech COVID-19 vaccine as a primary series for children aged 6 months-4 years,† based on safety, immunobridging, and limited efficacy data from clinical trials (1-3). Monovalent mRNA vaccine effectiveness (VE) against symptomatic SARS-CoV-2 infection was evaluated using the Increasing Community Access to Testing (ICATT) program, which provides SARS-CoV-2 testing to persons aged ≥3 years at pharmacy and community-based testing sites nationwide§ (4,5). Among children aged 3-5 years with one or more COVID-19-like illness symptoms¶ for whom a nucleic acid amplification test (NAAT) was performed during August 1, 2022-February 5, 2023, VE of 2 monovalent Moderna doses (complete primary series) against symptomatic infection was 60% (95% CI = 49% to 68%) 2 weeks-2 months after receipt of the second dose and 36% (95% CI = 15% to 52%) 3-4 months after receipt of the second dose. Among symptomatic children aged 3-4 years with NAATs performed during September 19, 2022-February 5, 2023, VE of 3 monovalent Pfizer-BioNTech doses (complete primary series) against symptomatic infection was 31% (95% CI = 7% to 49%) 2 weeks-4 months after receipt of the third dose; statistical power was not sufficient to estimate VE stratified by time since receipt of the third dose. Complete monovalent Moderna and Pfizer-BioNTech primary series vaccination provides protection for children aged 3-5 and 3-4 years, respectively, against symptomatic infection for at least the first 4 months after vaccination. CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months on December 9, 2022 (6), which might provide increased protection against currently circulating SARS-CoV-2 variants (7,8). Children should stay up to date with recommended COVID-19 vaccines, including completing the primary series; those who are eligible should receive a bivalent vaccine dose.


Subject(s)
COVID-19 , Child , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Testing , mRNA Vaccines , Vaccines, Combined
4.
MMWR Morb Mortal Wkly Rep ; 72(5): 119-124, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36730051

ABSTRACT

The SARS-CoV-2 Omicron sublineage XBB was first detected in the United States in August 2022.* XBB together with a sublineage, XBB.1.5, accounted for >50% of sequenced lineages in the Northeast by December 31, 2022, and 52% of sequenced lineages nationwide as of January 21, 2023. COVID-19 vaccine effectiveness (VE) can vary by SARS-CoV-2 variant; reduced VE has been observed against some variants, although this is dependent on the health outcome of interest. The goal of the U.S. COVID-19 vaccination program is to prevent severe disease, including hospitalization and death (1); however, VE against symptomatic infection can provide useful insight into vaccine protection against emerging variants in advance of VE estimates against more severe disease. Data from the Increasing Community Access to Testing (ICATT) national pharmacy program for SARS-CoV-2 testing were analyzed to estimate VE of updated (bivalent) mRNA COVID-19 vaccines against symptomatic infection caused by BA.5-related and XBB/XBB.1.5-related sublineages among immunocompetent adults during December 1, 2022­January 13, 2023. Reduction or failure of spike gene (S-gene) amplification (SGTF) in real-time reverse transcription­polymerase chain reaction (RT-PCR) was used as a proxy indicator of infection with likely BA.5-related sublineages and S-gene target presence (SGTP) of infection with likely XBB/XBB.1.5-related sublineages (2). Among 29,175 nucleic acid amplification tests (NAATs) with SGTF or SGTP results available from adults who had previously received 2­4 monovalent COVID-19 vaccine doses, the relative VE of a bivalent booster dose given 2­3 months earlier compared with no bivalent booster in persons aged 18­49 years was 52% against symptomatic BA.5 infection and 48% against symptomatic XBB/XBB.1.5 infection. As new SARS-CoV-2 variants emerge, continued vaccine effectiveness monitoring is important. Bivalent vaccines appear to provide additional protection against symptomatic BA.5-related sublineage and XBB/XBB.1.5-related sublineage infections in persons who had previously received 2, 3, or 4 monovalent vaccine doses. All persons should stay up to date with recommended COVID-19 vaccines, including receiving a bivalent booster dose when they are eligible.


Subject(s)
COVID-19 , Adult , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Vaccines, Combined , COVID-19 Testing , Vaccine Efficacy , RNA, Messenger
5.
JAMA Intern Med ; 183(1): 40-47, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36469350

ABSTRACT

Importance: The association of 13-valent pneumococcal conjugate vaccine (PCV13) use with pneumonia hospitalization in older adults, especially those with underlying medical conditions, is not well described. Objective: To evaluate the association of PCV13 use with pneumonia, non-health care-associated (non-HA) pneumonia, and lobar pneumonia (LP) hospitalization among US Medicare beneficiaries 65 years or older. Design, Setting, and Participants: This cohort study with time-varying exposure assignment analyzed claims data from US Medicare beneficiaries 65 years or older enrolled in Parts A/B with a residence in the 50 US states or the District of Columbia by September 1, 2014. New Medicare Parts A/B beneficiaries within 6 months after their 65th birthday were continuously included in the cohort after September 1, 2014, and followed through December 31, 2017. Participants were censored if they died, changed enrollment status, or developed a study outcome. Most of the analyses were conducted from 2018 to 2019, and additional analyses were performed from 2021 to 2022. Exposures: Use of PCV13 vaccination 14 days or more before pneumonia hospitalization. Main Outcomes and Measures: Discrete-time survival models were used to estimate the incidence rate ratio (IRR) and number of pneumonia hospitalizations averted through PCV13 use. The adjusted IRR for the association of PCV13 vaccination with pneumonia hospitalization was used to estimate vaccine effectiveness (VE). Results: At the end of follow-up (December 2017), 24 121 625 beneficiaries (13 593 975 women [56.4%]; 418 005 [1.7%] Asian, 1 750 807 [4.8%] Black, 338 044 [1.4%] Hispanic, 111 508 [0.5%] Native American, and 20 700 948 [85.8%] White individuals) were in the cohort; 4 936 185 (20.5%) had received PCV13 only, and 10 646 220 (79.5%) had not received any pneumococcal vaccines. More than half of the beneficiaries in the cohort were younger than 75 years, White, and had either immunocompromising or chronic medical conditions. Coverage with PCV13 increased from 0.8% (September 2014) to 41.5% (December 2017). The VE for PCV13 was estimated at 6.7% (95% CI, 5.9%-7.5%) for pneumonia, 4.7% (95% CI, 3.9%-5.6%) for non-HA pneumonia, and 5.8% (95% CI, 2.6%-8.9%) for LP. From September 2014 through December 2017, an estimated 35 127 pneumonia (95% CI, 33 011-37 270), 24 643 non-HA pneumonia (95% CI, 22 761-26 552), and 1294 LP (95% CI, 797-1819) hospitalizations were averted through PCV13 use. Conclusions and Relevance: The study results suggest that PCV13 use was associated with reduced pneumonia hospitalization among Medicare beneficiaries 65 years or older, many of whom had underlying medical conditions. Increased PCV13 coverage and use of recently approved higher-valent pneumococcal conjugate vaccines may avert additional pneumonia hospitalizations in adults.


Subject(s)
Pneumonia, Pneumococcal , Streptococcus pneumoniae , Aged , Humans , Female , United States/epidemiology , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/therapeutic use , Vaccines, Conjugate/immunology , Cohort Studies , Vaccine Efficacy , Medicare , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Pneumonia, Pneumococcal/immunology , Vaccination/methods , Pneumococcal Vaccines
6.
MMWR Morb Mortal Wkly Rep ; 71(48): 1526-1530, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36454688

ABSTRACT

On September 1, 2022, bivalent COVID-19 mRNA vaccines, composed of components from the SARS-CoV-2 ancestral and Omicron BA.4/BA.5 strains, were recommended by the Advisory Committee on Immunization Practices (ACIP) to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance (1). Initial recommendations included persons aged ≥12 years (Pfizer-BioNTech) and ≥18 years (Moderna) who had completed at least a primary series of any Food and Drug Administration-authorized or -approved monovalent vaccine ≥2 months earlier (1). On October 12, 2022, the recommendation was expanded to include children aged 5-11 years. At the time of recommendation, immunogenicity data were available from clinical trials of bivalent vaccines composed of ancestral and Omicron BA.1 strains; however, no clinical efficacy data were available. In this study, effectiveness of the bivalent (Omicron BA.4/BA.5-containing) booster formulation against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS-CoV-2 testing program.* During September 14-November 11, 2022, a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID-19 at the time of testing and no immunocompromising conditions, were included in the analysis. Relative vaccine effectiveness (rVE) of a bivalent booster dose compared with that of ≥2 monovalent vaccine doses among persons for whom 2-3 months and ≥8 months had elapsed since last monovalent dose was 30% and 56% among persons aged 18-49 years, 31% and 48% among persons aged 50-64 years, and 28% and 43% among persons aged ≥65 years, respectively. Bivalent mRNA booster doses provide additional protection against symptomatic SARS-CoV-2 in immunocompetent persons who previously received monovalent vaccine only, with relative benefits increasing with time since receipt of the most recent monovalent vaccine dose. Staying up to date with COVID-19 vaccination, including getting a bivalent booster dose when eligible, is critical to maximizing protection against COVID-19 (1).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , mRNA Vaccines , RNA, Messenger , United States/epidemiology , Vaccines, Combined
7.
BMJ Glob Health ; 7(11)2022 11.
Article in English | MEDLINE | ID: mdl-36319031

ABSTRACT

OBJECTIVE: Risk factors predisposing infants to community-acquired bacterial infections during the first 2 months of life are poorly understood in South Asia. Identifying risk factors for infection could lead to improved preventive measures and antibiotic stewardship. METHODS: Five sites in Bangladesh, India and Pakistan enrolled mother-child pairs via population-based pregnancy surveillance by community health workers. Medical, sociodemographic and epidemiological risk factor data were collected. Young infants aged 0-59 days with signs of possible serious bacterial infection (pSBI) and age-matched controls provided blood and respiratory specimens that were analysed by blood culture and real-time PCR. These tests were used to build a Bayesian partial latent class model (PLCM) capable of attributing the probable cause of each infant's infection in the ANISA study. The collected risk factors from all mother-child pairs were classified and analysed against the PLCM using bivariate and stepwise logistic multivariable regression modelling to determine risk factors of probable bacterial infection. RESULTS: Among 63 114 infants born, 14 655 were assessed and 6022 had signs of pSBI; of these, 81% (4859) provided blood samples for culture, 71% (4216) provided blood samples for quantitative PCR (qPCR) and 86% (5209) provided respiratory qPCR samples. Risk factors associated with bacterial-attributed infections included: low (relative risk (RR) 1.73, 95% credible interval (CrI) 1.42 to 2.11) and very low birth weight (RR 5.77, 95% CrI 3.73 to 8.94), male sex (RR 1.27, 95% CrI 1.07 to 1.52), breathing problems at birth (RR 2.50, 95% CrI 1.96 to 3.18), premature rupture of membranes (PROMs) (RR 1.27, 95% CrI 1.03 to 1.58) and being in the lowest three socioeconomic status quintiles (first RR 1.52, 95% CrI 1.07 to 2.16; second RR 1.41, 95% CrI 1.00 to 1.97; third RR 1.42, 95% CrI 1.01 to 1.99). CONCLUSION: Distinct risk factors: birth weight, male sex, breathing problems at birth and PROM were significantly associated with the development of bacterial sepsis across South Asian community settings, supporting refined clinical discernment and targeted use of antimicrobials.


Subject(s)
Bacterial Infections , Community-Acquired Infections , Infant , Infant, Newborn , Pregnancy , Female , Humans , Male , Longitudinal Studies , Bayes Theorem , Community-Acquired Infections/complications , Community-Acquired Infections/epidemiology , Risk Factors , Cohort Studies , Case-Control Studies , India/epidemiology
8.
Lancet Glob Health ; 10(9): e1289-e1297, 2022 09.
Article in English | MEDLINE | ID: mdl-35961352

ABSTRACT

BACKGROUND: Globally, neonatal mortality accounts for almost half of all deaths in children younger than 5 years. Aetiological agents of neonatal infection are difficult to identify because the clinical signs are non-specific. Using data from the Aetiology of Neonatal Infections in south Asia (ANISA) cohort, we aimed to describe the spectrum of infectious aetiologies of acute neonatal illness categorised post-hoc using the 2015 WHO case definitions of critical illness, clinical severe infection, and fast breathing only. METHODS: Eligible infants were aged 0-59 days with possible serious bacterial infection and healthy infants enrolled in the ANISA study in Bangladesh, India, and Pakistan. We applied a partial latent class Bayesian model to estimate the prevalence of 27 pathogens detectable on PCR, pathogens detected by blood culture only, and illness not attributed to any infectious aetiology. Infants with at least one clinical specimen available were included in the analysis. We assessed the prevalence of these aetiologies according to WHO's case definitions of critically ill, clinical severe infection, and infants with late onset, isolated fast breathing. For the clinical severe definition, we compared the prevalence of signs by bacterial versus viral aetiology. FINDINGS: There were 934 infants (992 episodes) in the critically ill category, 3769 (4000 episodes) in the clinical severe infection category, and 738 (771 episodes) in the late-onset isolated fast breathing category. We estimated the proportion of illness attributable to bacterial infection was 32·7% in infants in the critically ill group, 15·6% in the clinical severe infection group, and 8·8% among infants with late-onset isolated fast breathing group. An infectious aetiology was not identified in 58-82% of infants in these categories. Among 4000 episodes of clinical severe infection, those with bacterial versus viral attribution had higher proportions of hypothermia, movement only when stimulated, convulsions, and poor feeding. INTERPRETATION: Our modelled results generally support the revised WHO case definitions, although a revision of the most severe case definition could be considered. Clinical criteria do not clearly differentiate between young infants with and without infectious aetiologies. Our results highlight the need for improved point-of-care diagnostics, and further study into neonatal deaths and episodes with no identified aetiology, to ensure antibiotic stewardship and targeted interventions. FUNDING: The Bill and Melinda Gates Foundation.


Subject(s)
Bacterial Infections , Communicable Diseases , Bacterial Infections/etiology , Bayes Theorem , Child , Communicable Diseases/complications , Critical Illness , Humans , India/epidemiology , Infant , Infant, Newborn , World Health Organization
9.
Vaccine ; 40(32): 4283-4291, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35779963

ABSTRACT

Worldwide, childhood mortality has declined significantly, with improvements in hygiene and vaccinations against common childhood illnesses, yet newborn mortality remains high. Group B Streptococcus (GBS) disease significantly contributes to newborn mortality and is the leading cause of meningitis in infants. Many years of research have demonstrated the potential for maternal vaccination against GBS to confer protection to the infant, and at least three vaccine candidates are currently undergoing clinical trials. Given the relatively low disease incidence, any clinical vaccine efficacy study would need to include at least 40,000 to 60,000 participants. Therefore, a path to vaccine licensure based on a correlate of protection (CoP) would be the preferred route, with post-approval effectiveness studies demonstrating vaccine impact on reduction of disease burden likely to be required as part of conditional marketing approval. This workshop, hosted by the Bill & Melinda Gates Foundation on 10 and 11 February 2021, discussed considerations and potential statistical methodologies for establishing a CoP for GBS disease. Consensus was reached that an antibody marker with global threshold predictive of a high level of vaccine protection would be most beneficial for licensure assessments. IgG binding antibody in cord blood would likely serve as the CoP, with additional studies needed to confirm a high correlation with functional antibody and to demonstrate comparable kinetics of natural versus vaccine-induced antibody. Common analyses of ongoing seroepidemiological studies include estimation of absolute and relative disease risk as a function of infant antibody concentration, with adjustment for confounders of the impact of antibody concentration on infant GBS disease including gestational age and maternal age. Estimation of an antibody concentration threshold indicative of high protection should build in margin for uncertainties from sources including unmeasured confounders, imperfect causal mediation, and variability in point and confidence interval estimates across regions and/or serotypes.


Subject(s)
Streptococcal Infections , Child , Fetal Blood , Humans , Immunoglobulin G , Infant , Infant, Newborn , Serogroup , Streptococcal Infections/prevention & control , Streptococcus agalactiae , Vaccination
10.
JAMA ; 327(22): 2210-2219, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35560036

ABSTRACT

Importance: Efficacy of 2 doses of the BNT162b2 COVID-19 vaccine (Pfizer-BioNTech) against COVID-19 was high in pediatric trials conducted before the SARS-CoV-2 Omicron variant emerged. Among adults, estimated vaccine effectiveness (VE) of 2 BNT162b2 doses against symptomatic Omicron infection was reduced compared with prior variants, waned rapidly, and increased with a booster. Objective: To evaluate the association of symptomatic infection with prior vaccination with BNT162b2 to estimate VE among children and adolescents during Omicron variant predominance. Design, Setting, and Participants: A test-negative, case-control analysis was conducted using data from 6897 pharmacy-based, drive-through SARS-CoV-2 testing sites across the US from a single pharmacy chain in the Increasing Community Access to Testing platform. This analysis included 74 208 tests from children 5 to 11 years of age and 47 744 tests from adolescents 12 to 15 years of age with COVID-19-like illness who underwent SARS-CoV-2 nucleic acid amplification testing from December 26, 2021, to February 21, 2022. Exposures: Two BNT162b2 doses 2 weeks or more before SARS-CoV-2 testing vs no vaccination for children; 2 or 3 doses 2 weeks or more before testing vs no vaccination for adolescents (who are recommended to receive a booster dose). Main Outcomes and Measures: Symptomatic infection. The adjusted odds ratio (OR) for the association of prior vaccination and symptomatic SARS-CoV-2 infection was used to estimate VE: VE = (1 - OR) × 100%. Results: A total of 30 999 test-positive cases and 43 209 test-negative controls were included from children 5 to 11 years of age, as well as 22 273 test-positive cases and 25 471 test-negative controls from adolescents 12 to 15 years of age. The median age among those with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. At 2 to 4 weeks after dose 2, among children, the adjusted OR was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and among adolescents, the OR was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]). During month 2 after dose 2, among children, the OR was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) and among adolescents, the OR was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]). Among adolescents, the booster dose OR 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]). Conclusions and Relevance: Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Child , Child, Preschool , Female , Humans , Immunization, Secondary , Male , Vaccination
12.
MMWR Morb Mortal Wkly Rep ; 71(18): 633-637, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35511708

ABSTRACT

Nursing home residents have experienced disproportionally high levels of COVID-19-associated morbidity and mortality and were prioritized for early COVID-19 vaccination (1). Following reported declines in vaccine-induced immunity after primary series vaccination, defined as receipt of 2 primary doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or 1 primary dose of Ad26.COV2 (Johnson & Johnson [Janssen]) vaccine (2), CDC recommended that all persons aged ≥12 years receive a COVID-19 booster vaccine dose.* Moderately to severely immunocompromised persons, a group that includes many nursing home residents, are also recommended to receive an additional primary COVID-19 vaccine dose.† Data on vaccine effectiveness (VE) of an additional primary or booster dose against infection with SARS-CoV-2 (the virus that causes COVID-19) among nursing home residents are limited, especially against the highly transmissible B.1.1.529 and BA.2 (Omicron) variants. Weekly COVID-19 surveillance and vaccination coverage data among nursing home residents, reported by skilled nursing facilities (SNFs) to CDC's National Healthcare Safety Network (NHSN)§ during February 14-March 27, 2022, when the Omicron variant accounted for >99% of sequenced isolates, were analyzed to estimate relative VE against infection for any COVID-19 additional primary or booster dose compared with primary series vaccination. After adjusting for calendar week and variability across SNFs, relative VE of a COVID-19 additional primary or booster dose was 46.9% (95% CI = 44.8%-48.9%). These findings indicate that among nursing home residents, COVID-19 additional primary or booster doses provide greater protection against Omicron variant infection than does primary series vaccination alone. All immunocompromised nursing home residents should receive an additional primary dose, and all nursing home residents should receive a booster dose, when eligible, to protect against COVID-19. Efforts to keep nursing home residents up to date with vaccination should be implemented in conjunction with other COVID-19 prevention strategies, including testing and vaccination of nursing home staff members and visitors.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Nursing Homes , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
13.
JAMA ; 327(11): 1032-1041, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35157002

ABSTRACT

IMPORTANCE: Monitoring COVID-19 vaccine performance over time since vaccination and against emerging variants informs control measures and vaccine policies. OBJECTIVE: To estimate the associations between symptomatic SARS-CoV-2 infection and receipt of BNT162b2, mRNA-1273, and Ad26.COV2.S by day since vaccination before and during Delta variant predominance (pre-Delta period: March 13-May 29, 2021; Delta period: July 18-October 17, 2021). DESIGN, SETTING, AND PARTICIPANTS: Test-negative, case-control design with data from 6884 US COVID-19 testing sites in the pharmacy-based Increasing Community Access to Testing platform. This study included 1 634 271 laboratory-based SARS-CoV-2 nucleic acid amplification tests (NAATs) from adults 20 years and older and 180 112 NAATs from adolescents 12 to 19 years old with COVID-19-like illness from March 13 to October 17, 2021. EXPOSURES: COVID-19 vaccination (1 Ad26.COV2.S dose or 2 mRNA doses) 14 or more days prior. MAIN OUTCOMES AND MEASURES: Association between symptomatic infection and prior vaccination measured using the odds ratio (OR) from spline-based multivariable logistic regression. RESULTS: The analysis included 390 762 test-positive cases (21.5%) and 1 423 621 test-negative controls (78.5%) (59.9% were 20-44 years old; 9.9% were 12-19 years old; 58.9% were female; 71.8% were White). Among adults 20 years and older, the BNT162b2 mean OR for days 14 to 60 after a second dose (initial OR) was lower during the pre-Delta period (0.10 [95% CI, 0.09-0.11]) than during the Delta period (0.16 [95% CI, 0.16-0.17]) and increased with time since vaccination (per-month change in OR, pre-Delta: 0.04 [95% CI, 0.02-0.05]; Delta: 0.03 [95% CI, 0.02-0.03]). The initial mRNA-1273 OR was 0.05 (95% CI, 0.04-0.05) during the pre-Delta period, 0.10 (95% CI, 0.10-0.11) during the Delta period, and increased with time (per-month change in OR, pre-Delta: 0.02 [95% CI, 0.005-0.03]; Delta: 0.03 [95% CI, 0.03-0.04]). The Ad26.COV2.S initial OR was 0.42 (95% CI, 0.37-0.47) during the pre-Delta period and 0.62 (95% CI, 0.58-0.65) during the Delta period and did not significantly increase with time since vaccination. Among adolescents, the BNT162b2 initial OR during the Delta period was 0.06 (95% CI, 0.05-0.06) among 12- to 15-year-olds, increasing by 0.02 (95% CI, 0.01-0.03) per month, and 0.10 (95% CI, 0.09-0.11) among 16- to 19-year-olds, increasing by 0.04 (95% CI, 0.03-0.06) per month. CONCLUSIONS AND RELEVANCE: Among adults, the OR for the association between symptomatic SARS-CoV-2 infection and COVID-19 vaccination (as an estimate of vaccine effectiveness) was higher during Delta variant predominance, suggesting lower protection. For mRNA vaccination, the steady increase in OR by month since vaccination was consistent with attenuation of estimated effectiveness over time; attenuation related to time was greater than that related to variant.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Case-Control Studies , Child , Female , Humans , Male , Time Factors , Young Adult
14.
JAMA ; 327(7): 639-651, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35060999

ABSTRACT

Importance: Assessing COVID-19 vaccine performance against the rapidly spreading SARS-CoV-2 Omicron variant is critical to inform public health guidance. Objective: To estimate the association between receipt of 3 doses of Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273 vaccine and symptomatic SARS-CoV-2 infection, stratified by variant (Omicron and Delta). Design, Setting, and Participants: A test-negative case-control analysis among adults 18 years or older with COVID-like illness tested December 10, 2021, through January 1, 2022, by a national pharmacy-based testing program (4666 COVID-19 testing sites across 49 US states). Exposures: Three doses of mRNA COVID-19 vaccine (third dose ≥14 days before test and ≥6 months after second dose) vs unvaccinated and vs 2 doses 6 months or more before test (ie, eligible for a booster dose). Main Outcomes and Measures: Association between symptomatic SARS-CoV-2 infection (stratified by Omicron or Delta variants defined using S-gene target failure) and vaccination (3 doses vs unvaccinated and 3 doses vs 2 doses). Associations were measured with multivariable multinomial regression. Among cases, a secondary outcome was median cycle threshold values (inversely proportional to the amount of target nucleic acid present) for 3 viral genes, stratified by variant and vaccination status. Results: Overall, 23 391 cases (13 098 Omicron; 10 293 Delta) and 46 764 controls were included (mean age, 40.3 [SD, 15.6] years; 42 050 [60.1%] women). Prior receipt of 3 mRNA vaccine doses was reported for 18.6% (n = 2441) of Omicron cases, 6.6% (n = 679) of Delta cases, and 39.7% (n = 18 587) of controls; prior receipt of 2 mRNA vaccine doses was reported for 55.3% (n = 7245), 44.4% (n = 4570), and 41.6% (n = 19 456), respectively; and being unvaccinated was reported for 26.0% (n = 3412), 49.0% (n = 5044), and 18.6% (n = 8721), respectively. The adjusted odds ratio for 3 doses vs unvaccinated was 0.33 (95% CI, 0.31-0.35) for Omicron and 0.065 (95% CI, 0.059-0.071) for Delta; for 3 vaccine doses vs 2 doses the adjusted odds ratio was 0.34 (95% CI, 0.32-0.36) for Omicron and 0.16 (95% CI, 0.14-0.17) for Delta. Median cycle threshold values were significantly higher in cases with 3 doses vs 2 doses for both Omicron and Delta (Omicron N gene: 19.35 vs 18.52; Omicron ORF1ab gene: 19.25 vs 18.40; Delta N gene: 19.07 vs 17.52; Delta ORF1ab gene: 18.70 vs 17.28; Delta S gene: 23.62 vs 20.24). Conclusions and Relevance: Among individuals seeking testing for COVID-like illness in the US in December 2021, receipt of 3 doses of mRNA COVID-19 vaccine (compared with unvaccinated and with receipt of 2 doses) was less likely among cases with symptomatic SARS-CoV-2 infection compared with test-negative controls. These findings suggest that receipt of 3 doses of mRNA vaccine, relative to being unvaccinated and to receipt of 2 doses, was associated with protection against both the Omicron and Delta variants, although the higher odds ratios for Omicron suggest less protection for Omicron than for Delta.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Dose-Response Relationship, Immunologic , Humans , Immunization, Secondary , Middle Aged , Odds Ratio , Regression Analysis , Retrospective Studies , Risk Factors , Young Adult
15.
J Infect Dis ; 224(12 Suppl 2): S248-S257, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34469560

ABSTRACT

BACKGROUND: Streptococcus pneumoniae, or pneumococcus, is a leading cause of morbidity and mortality in children worldwide. Pneumococcal conjugate vaccines (PCV) reduce carriage in the nasopharynx, preventing disease. We conducted a pneumococcal carriage study to estimate the prevalence of pneumococcal colonization, identify risk factors for colonization, and describe antimicrobial susceptibility patterns among pneumococci colonizing young children in Port-au-Prince, Haiti, before introduction of 13-valent PCV (PCV13). METHODS: We conducted a cross-sectional study of children aged 6-24 months at an immunization clinic in Port-au-Prince between September 2015 and January 2016. Consenting parents were interviewed about factors associated with pneumococcal carriage; nasopharyngeal swabs were collected from each child and cultured for pneumococcus after broth enrichment. Pneumococcal isolates were serotyped and underwent antimicrobial susceptibility testing. We compared frequency of demographic, clinical, and environmental factors among pneumococcus-colonized children (carriers) to those who were not colonized (noncarriers) using unadjusted bivariate analysis and multivariate logistic regression. RESULTS: Pneumococcus was isolated from 308 of the 685 (45.0%) children enrolled. Overall, 157 isolates (50.8%) were PCV13 vaccine-type serotypes; most common were 6A (13.3%), 19F (12.6%), 6B (9.7%), and 23F (6.1%). Vaccine-type isolates were significantly more likely to be nonsusceptible to ≥1 antimicrobial (63.1% vs 45.4%, P = .002). On bivariate analysis, carriers were significantly more likely than noncarriers to live in a household without electricity or running water, to share a bedroom with ≥3 people, to have a mother or father who did not complete secondary education, and to have respiratory symptoms in the 24 hours before enrollment (P < .05 for all comparisons). On multivariable analysis, completion of the pentavalent vaccination series (targeting diphtheria, pertussis, tetanus, hepatitis B, and Haemophilus influenzae type b) remained significantly more common among noncarriers. CONCLUSIONS: Nearly a quarter of healthy children surveyed in Haiti were colonized with vaccine-type pneumococcal serotypes. This baseline carriage study will enable estimation of vaccine impact following nationwide introduction of PCV13.


Subject(s)
Carrier State/epidemiology , Carrier State/microbiology , Nasopharynx/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Child, Preschool , Cross-Sectional Studies , Female , Haiti/epidemiology , Humans , Infant , Male , Serogroup
16.
MMWR Morb Mortal Wkly Rep ; 70(34): 1163-1166, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34437519

ABSTRACT

Nursing home and long-term care facility residents live in congregate settings and are often elderly and frail, putting them at high risk for infection with SARS-CoV-2, the virus that causes COVID-19, and severe COVID-19-associated outcomes; therefore, this population was prioritized for early vaccination in the United States (1). Following rapid distribution and administration of the mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) under an Emergency Use Authorization by the Food and Drug Administration (2), observational studies among nursing home residents demonstrated vaccine effectiveness (VE) ranging from 53% to 92% against SARS-CoV-2 infection (3-6). However, concerns about the potential for waning vaccine-induced immunity and the recent emergence of the highly transmissible SARS-CoV-2 B.1.617.2 (Delta) variant† highlight the need to continue to monitor VE (7). Weekly data reported by the Centers for Medicaid & Medicare (CMS)-certified skilled nursing facilities or nursing homes to CDC's National Healthcare Safety Network (NHSN)§ were analyzed to evaluate effectiveness of full vaccination (2 doses received ≥14 days earlier) with any of the two currently authorized mRNA COVID-19 vaccines during the period soon after vaccine introduction and before the Delta variant was circulating (pre-Delta [March 1-May 9, 2021]), and when the Delta variant predominated¶ (Delta [June 21-August 1, 2021]). Using 17,407 weekly reports from 3,862 facilities from the pre-Delta period, adjusted effectiveness against infection for any mRNA vaccine was 74.7% (95% confidence interval [CI] = 70.0%-78.8%). Analysis using 33,160 weekly reports from 11,581 facilities during an intermediate period (May 10-June 20) found that the adjusted effectiveness was 67.5% (95% CI = 60.1%-73.5%). Analysis using 85,593 weekly reports from 14,917 facilities during the Delta period found that the adjusted effectiveness was 53.1% (95% CI = 49.1%-56.7%). Effectiveness estimates were similar for Pfizer-BioNTech and Moderna vaccines. These findings indicate that mRNA vaccines provide protection against SARS-CoV-2 infection among nursing home residents; however, VE was lower after the Delta variant became the predominant circulating strain in the United States. This analysis assessed VE against any infection, without being able to distinguish between asymptomatic and symptomatic presentations. Additional evaluations are needed to understand protection against severe disease in nursing home residents over time. Because nursing home residents might remain at some risk for SARS-CoV-2 infection despite vaccination, multiple COVID-19 prevention strategies, including infection control, testing, and vaccination of nursing home staff members, residents, and visitors, are critical. An additional dose of COVID-19 vaccine might be considered for nursing home and long-term care facility residents to optimize a protective immune response.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nursing Homes , SARS-CoV-2/isolation & purification , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Humans , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
17.
MMWR Morb Mortal Wkly Rep ; 70(32): 1088-1093, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34383730

ABSTRACT

Clinical trials of COVID-19 vaccines currently authorized for emergency use in the United States (Pfizer-BioNTech, Moderna, and Janssen [Johnson & Johnson]) indicate that these vaccines have high efficacy against symptomatic disease, including moderate to severe illness (1-3). In addition to clinical trials, real-world assessments of COVID-19 vaccine effectiveness are critical in guiding vaccine policy and building vaccine confidence, particularly among populations at higher risk for more severe illness from COVID-19, including older adults. To determine the real-world effectiveness of the three currently authorized COVID-19 vaccines among persons aged ≥65 years during February 1-April 30, 2021, data on 7,280 patients from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) were analyzed with vaccination coverage data from state immunization information systems (IISs) for the COVID-NET catchment area (approximately 4.8 million persons). Among adults aged 65-74 years, effectiveness of full vaccination in preventing COVID-19-associated hospitalization was 96% (95% confidence interval [CI] = 94%-98%) for Pfizer-BioNTech, 96% (95% CI = 95%-98%) for Moderna, and 84% (95% CI = 64%-93%) for Janssen vaccine products. Effectiveness of full vaccination in preventing COVID-19-associated hospitalization among adults aged ≥75 years was 91% (95% CI = 87%-94%) for Pfizer-BioNTech, 96% (95% CI = 93%-98%) for Moderna, and 85% (95% CI = 72%-92%) for Janssen vaccine products. COVID-19 vaccines currently authorized in the United States are highly effective in preventing COVID-19-associated hospitalizations in older adults. In light of real-world data demonstrating high effectiveness of COVID-19 vaccines among older adults, efforts to increase vaccination coverage in this age group are critical to reducing the risk for COVID-19-related hospitalization.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Aged , COVID-19/epidemiology , Humans , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
18.
MMWR Morb Mortal Wkly Rep ; 70(11): 396-401, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33735160

ABSTRACT

Residents of long-term care facilities (LTCFs), particularly those in skilled nursing facilities (SNFs), have experienced disproportionately high levels of COVID-19-associated morbidity and mortality and were prioritized for early COVID-19 vaccination (1,2). However, this group was not included in COVID-19 vaccine clinical trials, and limited postauthorization vaccine effectiveness (VE) data are available for this critical population (3). It is not known how well COVID-19 vaccines protect SNF residents, who typically are more medically frail, are older, and have more underlying medical conditions than the general population (1). In addition, immunogenicity of the Pfizer-BioNTech vaccine was found to be lower in adults aged 65-85 years than in younger adults (4). Through the CDC Pharmacy Partnership for Long-Term Care Program, SNF residents and staff members in Connecticut began receiving the Pfizer-BioNTech COVID-19 vaccine on December 18, 2020 (5). Administration of the vaccine was conducted during several on-site pharmacy clinics. In late January 2021, the Connecticut Department of Public Health (CT DPH) identified two SNFs experiencing COVID-19 outbreaks among residents and staff members that occurred after each facility's first vaccination clinic. CT DPH, in partnership with CDC, performed electronic chart review in these facilities to obtain information on resident vaccination status and infection with SARS-CoV-2, the virus that causes COVID-19. Partial vaccination, defined as the period from >14 days after the first dose through 7 days after the second dose, had an estimated effectiveness of 63% (95% confidence interval [CI] = 33%-79%) against SARS-CoV-2 infection (regardless of symptoms) among residents within these SNFs. This is similar to estimated effectiveness for a single dose of the Pfizer-BioNTech COVID-19 vaccine in adults across a range of age groups in noncongregate settings (6) and suggests that to optimize vaccine impact among this population, high coverage with the complete 2-dose series should be recommended for SNF residents and staff members.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19/epidemiology , Connecticut/epidemiology , Female , Humans , Immunization Schedule , Male , Middle Aged , Retrospective Studies
19.
PLoS One ; 15(10): e0240309, 2020.
Article in English | MEDLINE | ID: mdl-33075098

ABSTRACT

INTRODUCTION: Etiology studies of severe acute respiratory infections (SARI) in adults are limited. We studied potential etiologies of SARI among adults in six countries using multi-pathogen diagnostics. METHODS: We enrolled both adults with SARI (acute respiratory illness onset with fever and cough requiring hospitalization) and asymptomatic adults (adults hospitalized with non-infectious illnesses, non-household members accompanying SARI patients, adults enrolled from outpatient departments, and community members) in each country. Demographics, clinical data, and nasopharyngeal and oropharyngeal specimens were collected from both SARI patients and asymptomatic adults. Specimens were tested for presence of 29 pathogens utilizing the Taqman® Array Card platform. We applied a non-parametric Bayesian regression extension of a partially latent class model approach to estimate proportions of SARI caused by specific pathogens. RESULTS: We enrolled 2,388 SARI patients and 1,135 asymptomatic adults from October 2013 through October 2015. We detected ≥1 pathogen in 76% of SARI patients and 67% of asymptomatic adults. Haemophilus influenzae and Streptococcus pneumoniae were most commonly detected (≥23% of SARI patients and asymptomatic adults). Through modeling, etiology was attributed to a pathogen in most SARI patients (range among countries: 57.3-93.2%); pathogens commonly attributed to SARI etiology included influenza A (14.4-54.4%), influenza B (1.9-19.1%), rhino/enterovirus (1.8-42.6%), and RSV (3.6-14.6%). CONCLUSIONS: Use of multi-pathogen diagnostics and modeling enabled attribution of etiology in most adult SARI patients, despite frequent detection of multiple pathogens in the upper respiratory tract. Seasonal flu vaccination and development of RSV vaccine would likely reduce the burden of SARI in these populations.


Subject(s)
Bacteria/classification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Viruses/classification , Adult , Aged , Asymptomatic Diseases/epidemiology , Bacteria/genetics , Bacteria/isolation & purification , Bangladesh , Bayes Theorem , Female , Guatemala , Humans , Male , Middle Aged , Models, Theoretical , Molecular Epidemiology , Nasopharynx/microbiology , Oropharynx/microbiology , Polymerase Chain Reaction , Viruses/genetics , Viruses/isolation & purification , Young Adult
20.
Medicine (Baltimore) ; 99(35): e22035, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32871960

ABSTRACT

Imbalances in the gut microbiota mediate the progression of neurodegenerative diseases such as Parkinson's disease (PD). Fecal microbiota transplantation (FMT) is currently being explored as a potential therapy for PD. The objective of this study was to assess the efficacy and safety of FMT on PD. Fifteen PD patients were included, 10 of them received FMT via colonoscopy (colonic FMT group) and 5 received FMT via nasal-jejunal tube (nasointestinal FMT group). The score of PSQI, HAMD, HAMA, PDQ-39, NMSQ and UPDRS-III significantly decreased after FMT treatment (all P < .05). Colonic FMT group showed significant improvement and longer maintenance of efficacy compared with nasointestinal FMT (P = .002). Two patients achieved self-satisfying outcomes that last for more than 24 months. However, nasointestinal FMT group had no significant therapeutic effect, although UPDRS-III score slightly reduced. There were no patients were satisfied with nasointestinal FMT for more than 3 months. Among 15 PD patients, there were 5 cases had adverse events (AEs), including diarrhea (2 cases), abdominal pain (2 cases) and flatulence (1 case). These AEs were mild and self-limiting. We conclude that FMT can relieve the motor and non-motor symptoms with acceptable safety in PD. Compared with nasointestinal FMT, colonic FMT seems better and preferable.


Subject(s)
Fecal Microbiota Transplantation/statistics & numerical data , Parkinson Disease/therapy , Aged , Colonoscopy , Fecal Microbiota Transplantation/adverse effects , Fecal Microbiota Transplantation/methods , Female , Humans , Intubation, Gastrointestinal , Male , Middle Aged , Patient Satisfaction , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...